
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND
HANSCOM AIR FORCE BASE, MASSACHUSETTS

MCI-75-10 August 1974

THE FEASIBILITY

OF A

SECURE COMMUNICATIONS EXECUTIVE

FOR A

COMMUNICATIONS SYSTEM

Approved for
public release;
distribution
unli mited

INFORMATION SYSTEMS TECHNOLOGY APPLICATIONS OFFICE

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

20100827148

LEGAL NOTICE

When U.S. Government drawings, specifications or other data
are used for any purpose other than a definitely related
government procurement operation, the government thereby
incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished,
or in any way supplied the said drawings, specifications, or
other data is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or
conveying any rights or permission to manufacture, use, or
sell any patented invention that may in any way be related
thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for
publication.

THOMAS W. BAILEY, Major^AJSAF
Chief, Security Branch
Techniques Engineering Division

*1AL~
R. SCHELL, Major, USAF

Officer
Techniques Engineering Division

FOR THE COMMANDER

\xO]#V<\J
FRANK J. EMMA{ Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

ujiuiAaaufiED
SECURITY CLASSIFICATION OF THIS °AGE (Who,) Ooto 1 Inftod)

REPORT DOCUMENTATION PAGE RETA DTHSTRUCTION S
BEFORE COMPLETING FORM

1. REPORT NUMOlR

MCI-75-10
2. GOVT ACCESSION NO.

None
J. RECIPIENT'S CATALOG NUMBER

4. TITLE end Submit)

The Feasibility of a Secure Communications
Executive for a Communications System

5. TVFE OF REPORT & PERIOO COVERED

Final Report, July 1974

S. PERFORMING ORG REPORT NUMBER
MCI-75-10

?. AUTHORS) S. CONTRACT 0* ORANT NUMBEAfa!

t. PERFORMING ORGANIZATION NAME AND AODRESS

Deputy for Command & Management Systems (MCI)
Electronic Systems Division (AFSC)
L. G. Hanacom AFB, Bedford, MA 01731

10. PPOGRAM F.LEMENT, PROJECT. TASK
APTA A WORK UNIT NUMBERS

PE 11316F

11. CONTROLLING OFFICE NAME AND ADDRESS

See Item 9

II. RCPORT DATE

5 August 1974
IS. NUMBER OF PAOES

66
14. MONITORING AGENCY NAME & ADORESSC*' dllttrtnl from Controlling Olllco) IS. SECURITY CLASS, (ol thl* roporl)

UNCLASSIFIED

IS*. DtCLASSIFICATION/ DOWN GRADING
SCHEDULE N^

16. DISTRIBUTION STATEMENT tot thl, Rtport)

Approved for public release} distribution unlimited.

17. DISTRIBUTION STATEMENT el Mo obitroct .nf.r.d In Block 20, II dlllonnl horn R.porfj

IS. SUPPLEMENTARY NOTES

Security Kernel
Secure Communications Executive
Internal Access Control
"-Property
AUTODDJ Security Controls

20. ABSTRACT fConMnira on rovotto aid* II noeooiory and Identity by block number)

This document presents the results of the Security Kernel Working Group's study
of the feasibility, form and specification inputs required to incorporate the
security kernel into a oommunioations processor. The study was performed during
July 1974. It was concluded that the kernel can be tailored to provide communi-
cations applications support. The limitations and requirements imposed on the
system by the use of the kernel are presented. The current DCS AUTODIN security
controls and techniques are described in the appendix.

DD , :S:M
7I 1473 EDITION OF I NOV SI IS OBSOLETE UNCU.SSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon D»U Inl.r.rt)

SECURITY CLASSIFICATION OF THIS PAGE(Whtn Dmf Eaffd)

Foreword

The Security Kernel Working Group, whose purpose Is
outlined In Section 1.1 of this report, conducted Its
study at the Cornmunlcat Ions Computer Programming Center
(CCPC), Tinker AFB, Oklahoma during the period 1-12 July
and at tolTRE, Bedford, MA during the period 15-26 July.

s

' O'l.

t

LIST OF TABLES

£&&ft
2.2.2-1 Process Functions 12

4.1.1-1 Process Switches for Typical Input Packet 21

4.1.1-2 Process Switches for Last Packet of Input
Message 22

4.1.1-3 Process Switches for Output Packets 23

4.3.2-1 Communications Processor Process Count 27

4.3.2-2 Communication Processor Table Summary 28

4.3.4-1 SCE Space Summary 29

6.3-1 Processor Characteristics Table 43

LIST OF FIGURES

P££e

2.2.1-1 Applications Structure 11

5.1.2-1 SCE Production Schedule 3^

5.1.2.5-1 Correspondence Proof of Formal Spec
to Model 36

TABLE OF CONTENTS

Page

FOREWORD ii

LIST OF FIGURES vi

LIST OF TABLES vii

1. OVERVIEW 1

1.1 Purpose of the Working Group 1
1.2 Scope of the Study Effort 1
1.3 The Secure Communications Executive 2
1.4 Assumptions Made During the Study Effort 3
1.5 Format of the Paper 4

2. TARGET DESIGN 5

2.1 Secure Communications Executive (SCE) 5
2.1.1 Functional Requirements 5

5
5
5
r.
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
8
8
8
8
9
9
9

2.1.2 SCE Commands
2.1.2.1 Create Process
2.1.2.? Delete Process
2.1.2.3 Block
2.1.2.4 Wakeup
2.1.2.5 Create Segment
2.1.2.6 Delete Segment
2.1.2.7 Give Access
2.1.2.8 Get Access
2. 1.2.9 Release Access
2.1.2.10 Swap-In
2.1.2.11 Swap-Out
2.1.2.12 Reconfigure Segments
2.1.2.13 Do I/O
2.1.3 SCE Data Bases
2.1.3. 1 Memory Block Table
2.1.3.2 Segment Hash Table
2.1.3.3 Active Segment Table
2.1.3.4 Semaphores (IPC Elements)
2.1.3.5 Process Table
2.1.3.6 Port Assignment Table
2.1.3.7 Process Segment
2.1.3.8 Directory
2.1.4 Other SCE Considerations
2.1.4.1 Utility and Support Functions
2.1.4.2 Constraints

2.2 Applications Target Design 10
2.2.1 Applications Structure 10
2.2.2 Process Functions 10

3. SECURITY PROVIDED BY THE SCE 15

3.1 Compromise Prevention 15
3.1.1 Definition of Compromise 15
3.1.2 Compromise Prevention by Means of

Internal Access Control 15
3.1.3 Access Domains of a Process and

the *-Property 16
3.1.4 Non-SCE "Trusted" Programs 17

3.2 System Integrity 17
3.2.1 Definition 17
3.2.2 The SCE and System Integrity 18
3.2.3 The SCE and Message Integrity 18
3.2.4 The SCE and Functional Integrity 18
3.2.4.1 Functional Integrity of the

Applications and Utility/Support
Software 19

3.2.4.1.1 Trusted Programs 19
3.2.4.1.2 Other Applications and Utility/

Support Software 19
3.2.4.2 The SCE and Test and Debugging 19

4. PERFORMANCE 20

4.1 SCE Timing 20
4.1.1 Process Switches 20
4.1.2 Other SCE Functions 24
4.1.3 Total 25

4.2 System Timing 25

4.3 Main Memory Size 26
4.3.1 Resident Code 26
4.3.2 Resident Tables 26
4.3.3 Allocatable Space 28
4.3.4 Summary 29

4.4 Disk Usage 29

5. SOFTWARE PRODUCTION 31

5.1 SCE Software 31
5.1.1 Production Methodology 31
5.1.2 Software Production Schedule 32
5.1.2.1 Develop Formal Specification

Based on Math Model 32

5.1.2.2 Develop High-Level Language
Expression Based on Formal
Specification 32

5.1.2.3 Translate High-Level Language
Expression into Machine Language 33

5.1.2.4 Develop Certified Disassembler 33
5.1.2.5 Prove Correspondence of Formal

Specification to Math Model 35
5.1.2.6 Prove Correspondence of Machine

Language to Formal Specification 35
5.1.2.6.1 High-Level Language to Formal

Specification 35
5.1.2.6.2 Machine Language to High-Level

Language 35
5.1.3 Contractor Requirements 37
5.1.1 SCE Load Tape 38
5.1.5 Certification Procedure 38
5.1.6 Modification to SCE Software 38

5.2 Non-SCE Software 39
5.2.1 Multilevel "Trusted" Programs 39
5.2.2 Single-Level Programs 39

6. SCE REQUIREMENTS 40

6.1 Software Requirements 40
6.1.1 General Software Requirements 40
6.1.2 Software Development Requirements 40
6.1.2.1 High-Level Language Requirements 40
6.1.2.1.1 Mandatory Features 40
6.1.2.1.2 Desirable Features 40
6.1.2.2 Machine Language Requirements 41

6.2 Hardware Requirements 41
6.2.1 Mandatory Features 41
6.2.2 Desirable Features 41

6.3 Existing Hardware 41

7. CONCLUSIONS OF THE WORKING GROUP 44

APPENDIX
A. APPLICABILITY OF AUTODIN SECURITY CONTROLS A-1

1. Overview

1.1 Purpose of the Working; Group

A feasibility study working group was formed at CCPC
on 1 July 197^ as a technical working group sponsored by
the Deputy for Communications and Navigation, Electronic
Systems Division to determine the feasibility, form and
specification inputs required to incorporate the kernel
into a communications processor (CP). This document
represents the results of that effort.

1.2 Scope of the Study Effort

The study effort addressed only the technical aspects
of providing security for a CP and avoided assessing a
security kernel approach with regard to any cost-related
or management-related criteria. To this end, the working
group directed its effort toward determining the technical
feasibility of a kernel approach to CP security using as a
guideline several basic questions.

(1) Is i,here hardware to implement the kernel?

(2) What hardware modifications would be necessary
to implement the kernel?

(3) What coding limitations/bonuses would be
involved with implementing the kernel?

(4) What does the kernel do to throughput?

(5) What does the kernel do to executive functions?

(6) Will the kernel adequately protect against
compromise?

(7) What does the kernel do for integrity?

It was felt that the study required to provide the
answers to those questions would aid the working group in
developing sound conclusions as to the technical
feasibility of a kernel approach to CP security.

The effort required to answer these questions and
ultimately to develop the conclusions of the study
involved a process characterized by the following steps:

(1) The kernel concept as employed in the PDP 11/45
was discussed followed by discussions of a typical message

switching system.

(2) A trial design which synthesized the two
concepts was then developed.

(3) The critical aspects (e.g., timing, sizing,
production, and verification methods, hardware
availability) of the synthesized approach were
investigated.

(4) Answers to the guideline questions were
formulated based on the findings of the various aspects of
the study, assumptions that had to be made in the course
of the study (refer to Section 1.4), and some tailoring of
the original kernel concept that was necessary during the
course of the study (refer to Section 2).

(5) A set of conclusions was then drawn based upon
the answers to the guideline questions and the criteria
stated in 1.2 (3).

1.3 The Secure Communications Executive (SCE)

It was found that a significant degree of tailoring
of the original security kernel concept (1) was necessary
during the course of the feasibility study. As detailed
in Section 2 of this report, the functions of the security
kernel have been expanded from those which solely perform
security management to those which provide not only this
feature but also some of those functions performed by an
executive in a communications processor. This has
resulted in the security kernel taking on a much broader
role in communications processing activities.

It is felt that the term "security kernel", as
originally conceived, is no longer applicable to the
concept of providing security for CP becuase of the
expanded role developed during the study effort for the
software module intended to provide the security. The
software module has taken on the characteristics of an
executive which also performs security management for a
communication processor, and as such will henceforth be
termed a "Secure Communications Executive" (SCE).

(1) ESD-TR-73-294, Schiller, L., "Design of a Security
Kernel for the PDP 11/45", 30 Jun 1973.

1.4 Assumptions Made During the Study Effort

During the course of the feasibility study, it became
necessary to make several assumptions to:

(1) Reasonably limit the scope of an assessment to
within the time and manpower constraints of the working
group.

(2) Allow a calculation or series of calculations to
be performed.

(3) Provide a baseline from which assessments or
conclusions could be made.

The assumptions made during the feasibility study are
listed.

(1) A message consists of 4 packets. Each packet
consists of 256 characters (bytes).

(2) The communications system will protect
information along 8 security levels, as per AUTODIN.

(3) CPs will handle 6 levels of classified
information (exceptions: R (NATO) and M (SI/SAO)
traffic).

(4) The SCE is a software device and cannot directly
address the hardware aspect of the system integrity
question. Integrity as addressed within this paper is
narrowed to include only that of the processor software
itself.

(5) Code and format conversion must be done by the
system.

(6) The hardware as addressed within the paper
operates correctly.

(7) For the purposes of timing and sizing
calculations, a message passing through the CP will
undergo no exception processing.

(8) The MITRE mathematical model of the SCE is
appropriate for a CP. (1)

(1) ESD-TR-73-278, Vol I-III, Bell, D. and LaPadula, L.,
"Secure Computer Systems".

1.5 Format of the Paper

This paper details the findings of the month-long
feasibility study effort. Section 2 describes the design
features of the SCE with regard to structure and functions
performed. Section 3 addresses the means in which the SCE
would provide for security and the extent to which it
would help maintain system integrity. Section 4 presents
calculations of timing and sizing estimates that would be
characteristic of a communicalons processor incorporating
an SCE. Section 5 presents the production and
verification procedures required to develop the SCE and
allow for its ultimate certification. This section also
presents a schedule for completing the production and
verification procedures for the SCE and briefly addresses
the methods of producing and verifying the applications
software. Section 6 provides a list of hardware and
software requirements for implementing the SCE and matches
several eligible machines against the hardware
requirements presented. Section 7 presents a list of
conclusions to which the working group has cone as a
result of the study effort.

' ', a

2. Target Design

?.1 Secure Communications Executive (SCE)

2.1.1 Functional Requirements

Th- CP SCE will support the execution of a large
number of concurrent processes in communication
processors. It provides those functions necessary for
controlling access to the system's real resources, and
provides applications and utility/support software with an
efficient means of accessing and managing these resources
in terms of logical resources. In doing so, it enforces
the security rules for access by processes to resources.
The SCE has complete responsibility for management of the
hardware elements of the access control mechanism (e.g.,
description registers) and for access control data bases.

The functions performed by the SCE are as follows:

(a) Resource control/management
(b) Interrupt initial processing
(c) Scheduling
(d) Storage protectior:
(e) Multiprogramming
(f) Interface control
(g) Security control

The storage protection function is distinguished from
security control, since it is in large part an integrity
function.

2.1.2 SCE Commands'

2.1.2.1 Create Process

This command will allow a process to create a
separate process, having a pre-defined function and
clearance.

2.1.2.2 Delete Process

A process may delete itself, or a process it created,
from the set operating in the system.

2.1.2.3 Block

In a manner analogous to that used for the P
synchronizing primitive, a block command (directed to a
specific semaphore) will unbind the calling process from

the physical processor and bind to the processor the
highest priority "ready" process.

2.1.2.4 Wakeup

The wakeup command performs a funotion comparable to
that of the V synchronizing primitive, with the added
parameters of a priority (for the awakened process) and a
2-word message (to be made available to the awakened
process).

2.1.2.5 Create Segment

This command creates a logical segment for subsequent
inclusion in the address space of a process.

2.1.2.6 Delete Segment

Removes a previously created logical segment from the
3et available for inclusion in any process address space.

2.1.2.7 Give Access

Adds a specified process to the access control list
of a segment, in a specified mode.

2.1.2.8 Get Access

Associates a hardware descriptor register with a
specified segment, if access control rules allow.

2.1.2.9 Release Access

Unbinds a descriptor register from its currently
associated segment.

2.1.2.10 Swap-In

Insures that the specified segment is physically
located in main memory.

2.1.2.11 Swap-Out

Allows the specified segment to be moved to secondary
storage.

2.1.2.12 Reconfigure Segments

Performs, under strict control, the updating of SCE
data bases specifying the variable security-related

characteristics of all I/O interfaces.

2.1.2.13 Do I/O

Provides a generalized function through which the SCE
can exercise the required degree of control ov^r I/O
operations, including the initiation of data transfer to
or from specified lines, the reading of the real-time
clock and access to device status.

2.1.3 SCE Data Bases

2.1.3.1 Memory Block Table

Flags (allocated, concatenated, free, reserved) 2 bits
Chain or Active Segment Table Entry (ASTE)

Number 14 bits
Size 1 byte

Total 3 bytes per entry

2.1.3.2 Segment Hash Table

Total 2 bytes per entry

2.1.3.3 Active Segment Table (AST)

Type, status, changed, aged, classification 1 byte
Size 1 byte
Disk address 2 bytes
Chain (for hash table) 2 bytes
Address 2 bytes
Descriptor count, age chain 2 bytes
Access Control List (ACL) head 4 bytes
Category 2 bytes

Total 16 bytes/AST entry, plus space for ACL Entry Pool,
2 bytes/element

2.1.3.4 Semaphores (IPC Elements)

Process pointer 1 byte
Priority 1 byte
Link 1 byte
Message 4 bytes

Total 7 bytes/semaphore

2.1.3.5 Process Table

SCE register storage (highly machine-dependent) 18 bytes
Flags (blocked, ready, inactive) and line 1 byte
Class 1 byte
Category 2 bytes
Process Segment ASTE Number 2 bytes
Semaphore queue head 1 byte

Total 25 bytes/process

2.1.3.6 Port Assignment Table

Address 1 byte
Port ID 1 byte
Classification 1 byte
Category 2 bytes
Function 2 bytes
Process ID 2 bytes

Total 9 bytes/port

2.1.3.7 Process Segment

Descriptor register storage 32 bytes
Process ID 2 bytes
Process number 2 bytes
Classification 1 byte
Category 2 bytes
Segment Descriptor Numbers 64 bytes
SCE Stack as required

Total 103 bytes plus SCE stack as required, not required
to be core-resident.

2.1.3.8 Directory

Type, status, classification 1 byte
ACL Head 1 byte
Category 2 bytes
Disk address 2 bytes
Size 2 bytes

Total 8 bytes/entry, plus space for the ACL elements,
2 bytes/element, not in general core resident.

8

2.1.4 Other SCE Considerations

2.1.4. 1 Utility and Support Functions

Certain functions which might be found in an
Executive program are not included in the SCE. These are
generally characterized as utility and support functions.
Since they are outside the SCE, they are bound by the
SCE's security enforcement, but they may where necessary
be certified, "trusted" processes.

Functions included in this category are the
following:

Trusted Process-?

Loh-isr/ Initializer
DASD Patch
Program End of Job (EOJ)

Single-level. System High

DASD/Tape Copy and Compare
DASD to Tape to Printer Copy
Memory/Program Dump

Single-level

DASD Dump
DASD/Tape Initializer
Peripheral Error Logger

2.1.4.2 Constraints

The requirement that the SCE provide effective
security controls places significant restrictions on the
accesses to system resources it allows, as described in
Section 3.1.2. As a consequer.ee, a system of applications
programs designed to efficiently use the SCE will be
influenced by the restrictions placed upon it. In
particular, different processes will be required to handle
information of different security levels, and
communication between processes will be subject to the
SCE's security-enforcing rules. Certain objects existing
in the system (e.g., queue slots) must be partitioned
according to security characteristics, rather than being
held in a single homogeneous storage area. These
constraints do not limit the functional capability of the
overall communications processor; they do affect the
manner in which its functions are implemented. More

detailed descriptions are given in the following section.

2.2 Applications Target Design

The applications target design presented directly
reflects SCE considerations. The functions, required at a
CP, have been organized to better fit an SCE and allow
convenient process structuring.

2.2.1 Applications Structure

Figure 2.2.1-1 indicates the processes involved in
message switching. This process division would serve well
for modular system development.

2.2.2 Process Functions

Table 2.2.2-1 following Figure 2.2.1-1 enumerates the
functions associated with each of the processes shown in
the Figure for the CP message switching system. These
functions are further explained in the applications
software specification.

10

Applications Structure

C
E

SCE - SECURITY COMMUNICATIONS EXECUTIVE

MLLH - MULTI-LEVEL LINE HANDLER

IDC - INPUT DEVICE CONTROLLER

ODC - OUTPUT DEVICE CONTROLLER

CIC - COMMON INPUT CONTROLLER

COC - COMMON OUTPUT CONTROLLER

J/Q - JOURNALING/QUEUING

MLTH - MULTI-LEVEL TAPE HANDLER

Figure 2.2.1-1

11

MLLH Functions:

Line Controller Interface
Validation
Timing
Obtain Buffers and Control Toggle
Specification of Classification
Error Handling
Restart Support
Line Unloading and Starting Support
Reconfiguration Considerations
Trend Analysis Support
IDC/CIC Interface..

IDC/CIC Functions:

MLLH Interface
Link Protocol Control
Line Monitoring
ADCCP Supervisory Function
Packet Validation
Header Validation
Interface to Message Service Routine
Message Sequence Number and Date Time Group (DTG)
Trace Information Adding
Addressee Summarizing
Operator Interface
Code and Format Conversion
Holdoff of Inputting
Statistics Collection
Restart Support
Device Monitoring
Error Analysis
Diagnostics
Timing
Establishment of Queue Slot Information
J/Q Interface

Table 2.2.2-1 Process Functions

12

J/Q Functions:

IDC/CIC Interface
Message Collecting and Timing
Queue Processing
Activation of On-Line Retrieval
Issuing of Partial and Complete Acknowledgement
Message Deletion After One-Half Hour
Forced Writes to Journal
Tape Buffer Management
Interface to MLTH
Pushing of Work to Output Device/Line

COC Functions:

Routing
ODC Interface
Operator Interface
Interface to Message Service Routine
J/Q Interface for Disposition Reflection
Swap Out
Subnet Bit Summarizing

ODC Functions:

COC Interface
Swap In
Code and Format Conversion
Line Monitoring
Link Protocol Control
MLLH Interface
Acknowledgement Indication or Formulation
Control of Data Pack Retransmission
Statistics Collection
Restart Support
Device Monitoring
Error Analysis
Diagnostics
Timing

Table 2.2.2-1 Process Functions

13

Asynchronous Functions:

Alternate Routing
Detail Diagnostics
Auto-Dial Log On
System Reconfiguration
Probe Generation
Site Status Message Generation
KG34 Initialization
System Initialization
System Restart
USTI
Console
Service Message Generation
Traffic Trace Message Generation
Statistics Report Formulation
System Drain
Intercepting

Table 2.2.2-1 Process Functions (Cont.)

14

3- Security Provided by. the SCE

3.1 Compromise Prevention

3.1.1 Hefi.nition of Compromise

A security compromise is defined as one or more of
the following conditions taking place:

(1) A terminal or interfaced system receives a
message classified to a level higher than the clearance
level of the terminal or interfaced system.

(2) A terminal or interfaced system receives a
message having a special access category not contained in
the set of special access categories authorized for the
terminal or interfaced system.

3.1.2 Compromise Prevention by Means of Internal Access
Control

A major feature of the SCE is that it effectively
prevents compromise that could otherwise occur due to
software errors or maliciously inserted software
trapdoors. (1) The concepts of a "process" and "access
authorization" are necessary to understand the mechanism
of the SCE in compromise prevention:

Process - A process in a CP is defined as a program
in execution or a virtual machine state. A process is a
sequence of processor activity which has a logical
identity, a security clearance, access capabilities
(implied by its clearance together with
access-conl-rol-lists associated with information
segments), and a well-defined functional responsibility.
Each process performs a portion of the total
communications processor function.

Access Authorization - A process, P, has access
authorization to a segment of information, S, if and only

(1) The SCE does not address compromise that could occur
due to hardware failure or deliberately "debugged"
hardware. Secure production methods, reliability
requirements, and testing must be applied to insure that
the hardware performs as specified and does not perform
any undocumented operations. The SCE approach relies upon
the correctness of the hardware as specified, as does any
programmed internal access control mechanism.

15

if the following are true:

(1) The clearance level (i.e., unclassified,
confidential, secret, top secret) of P is greater than or
equal to the classification level of S.

(2) The set of special acces.. categories (e.g.,
SIOP, SI/SAO) attributed to P contains contains the set of
special access categories attributed to S.

(3) P's identification appears on the
access-control-list associated with S. The
access-control-list entry specifying P will also specify
the access mode (e.g., read/write, read/execute)
authorized for P to access S.

The function of the SCE as an access control
mechanism is to manage the real resource of the bare
machine (e.g., the CPU, addressing registers, memory, I/O
channel and port interfaces) to allow processes access to
only that information for which they have access
authorization. The fact that the SCE is verified as
functionally correct insures that the access control it
provides will be effective. Since all processor activity
is directly linked with processes in execution,
effectively enforcing every access made by processes
according to the access authorization rules insures that
the classes of compromise specified in Section 3.1.1
cannot occur.

3.1.3 Access Domains of a Process ar.'d _t'u- £_- Property
The domain of a process refers to the set of segments

(data or procedure) currently addressable by the process
(i.e., segments which have been made directly accessible
in the address space of a process). In the context of the
machines under consideration for supporting the SCE, the
domain of a process is defined by the address values
currently loaded (or designated to be loaded) in the
machine's descriptor registers for the process. Only the
SCE can alter the domains of processes. The SCE prevents
compromise by applying rules which determine whether or
not to honor a process' request to add a segment to its
domain (with some mode of access). First, the process
must have access authorization to the segment. Second, a
condition called the "-property must not be violated by
inclusion of the desired segment in the domain of the
process. The "-property dictates that the domain of a
process cannot include read-access to a segment of higher
classification than any single segment accessible with
write-access in the domain. This property absolutely

16

prevents a process from downgrading information by reading
from a classified segment and writing into a lower
classified segment. The machine code executed by the
process may contain errors or maliciously planted
trap-doors, and yet no program can effect a security
compromise due to the restriction on the domains of the
processes executing the program.

3.1.4 Non-SCE "Trusted" Programs

The *-property, described above, will not be
necessary for the following processes:

1. I/O line-handler processes
2. Tape-handler process
3- System-console process
4. Authentication process
5. System initialization process

These processes will be "multilevel" in that their
domains will contain read/write access to segments of
various classifications. These multilevel processes will
be constrained by the SCE to execute only programs which
are proven "trustworthy" (ref. Section 5.2.1) with respect
to the criterion of not downgrading information. This is
a much simpler proof than verifying the complete
functional correctness of these programs, and therefore,
the identification of the need for several trustworthy
programs is not detrimental to the effective certification
of a CP with respect to compromise prevention. Although
multilevel processes are not constrained by the
•-property, their domains will never include any
capabilities for managing the real resources (e.g., in
particular, descriptor registers and the SCE'3
access-control data base) of the system. Those
capabilities are reserved exclusively for the SCE.

3.2 System Integrity

3.2.1 Definition

:>yntem integrity includes those functions necessary
to insure that the information in the system is delivered
accurately without distortion or errors introduced during
distribution, that the failure of one or more hardware or
software elements can be adequately detected and an
appropriate restart/recovery procedure initiated and that
only authorized terminals or source/destination devices
and operators are granted access to the various security
levels of the network. System integrity has three

17

elements: message integrity, functional integrity, and
security. Message integrity is concerned primarily with
the accuracy and validity of information flowing between
information sources and destinations in the system.
Functional integrity involves those steps required to
detect the failure of hardware or software elements and
initiate an appropriate action. Security concerns itself
with those actions taken to insure that only authorized
terminals or souroe/destination devices and operators are
granted access to the various security levels of the
network.

3.2.2 The SCE and System Integrity

All of the elements of system integrity involve both
hardware and software. The SCE is a software device and
thus cannot directly address the hardware part of the
system integrity question. How the SCE aodresses system
security is answered in Section 3.1. This section (3.2)
will discuss what advantages it provides for the elements
of message and functional integrity.

3.2.3 The SCE and Message Integrity

The SCE will not prevent improper modification of
information by processes having authorized access. The
amount of testing necessary to certify that the system
possesses message integrity can be reduced by restricting
write access to the smallest number of processes possible.
The modification of information by any other processes is
prevented by the access control features of the SCE.
However, proper handling of the data is still dependent
upon the correctness of programs executed by processes
having authorized access.

3.2.4 The SCE and Functional Integrity

Clearly, system integrity depends upon the
correctness of each software module as well as the
correctness of each hardware element. The SCE is an
access control device which in addition to granting or
denying access to system resources to a module also
controls the type of access. As such, the SCE has no
control over the correctness of any software module.
However, since the security enforcing functions of the SCE
must be proved correct, their integrity is unquestioned.

18

3.2.4.1 Functional Integrity of the Applications H> <l
•^ ilitv/Support Software

3.2. H. 1.1 Trusted Programs

Trusted programs will be those modules of software
which the executive program (SCE) trusts not to downgrade
information. This trust is founded on a formal proof that
the module does indeed have this property. As such,
trusted programs can be expected to perform security
related functions correctly.

3.2.4.1.2 Other Applications and Utility/Support Software

Careful design testing and debugging is the approach
to determining applications software correctness. This is
becuase a formal model (analogous to the SCE model) of th^
functions of the applications software does not exist and
would be impractical to synthesize.

3.2.4.2 The SCE and Test and Debugging

The SCE effectively restricts processes to executing
programs and accessing data for which the process has
access authorization. Verifying the correct execution of
a program by a process is simplified since only the
authorized domain of the process need be checked to
determine the total effect of the computation. Obscure
side effects external to the authorized domain are
absolutely prevented by the SCE which can also give
warning if the process attempts unauthorized access.
Moreover, debugging may be simplified since only the
processes having authorized access to the errored
information need to be checked. The time and effort
required to discover and correct an error should be less
since fewer programs need be checked.

19

4. Performance

This section examines the performance of a
communications processor using an SCE. The performance
estimates are based on the requirements of the maximum
configuration, maximum-throughput CP.

Section 4.1 below addresses the fraction of the
processor's time that must be allocated to the SCE.
Section 4.2 considers overall processor timing including
application as well as SCE functions. Section 4.3
presents a computation of SCE main memory requirements and
Section 4.4 discusses secondary storage timing.

4.1 SCE Timing

The processor time requirements of the SCE are
divided into two major categories. The first includes the
processor time allocated to process switches, and the
second time allocated to other SCE functions.

The basic throughput requirement for the
maximum-throughput CP is 6000 characters per second in
plus out. A ten percent over head for packet addresses is
required, yielding a total of 6600 characters per second.
A typical message is assumed to include four 256-character
packets. Dividing the characters per second for the
processor by typical message length (2x256 = 1024
characters per message) yields 6.45 messages per second in
plus out. As the counts of process switches and other SCE
operations are on a "per message in" basis, the required
figure is input messages per second. Assuming messages-in
equal messages-out (single address messages at the CP) the
figure above must be divided by two to yield 3.22
messages-in per second.

4.1.1 Process Switches

The count of process switches per message through the
CP is based on the target application design of Section
2.2. Tables 4.1.1-1 through 4.1.1-3 summarize the
required process switches for a typical four-packet
message.

The process switches of Table 4.1.1-1 occur once per
packet for each of the first three packets of a message.
The switches of Table 4.1.1-2 occur once per message (for
the last input packet of the message). The process
switches of Table 4.1.1-3 occur for each of the four
output packets of the message. Multiplying the counts of

20

process switches from

Table 14.1.1-1 by 3
Table 4.4.4-2 by 1
Table 4.1.1-3 by 4

and summing yields 84 process switches per message.

Total time per second required for process switches
is determined by the time per process switch and the
process switches per second.

Switch Function of process switched to

Cur Proc—MLLH Create segment for received packet

MLLH—IDC-CIC Process input packet

IDC-CIC—J/Q Journal
Construct Packet ack

J/Q—ODC Process Packet ack for output

ODC-MLLH Output packet ack

MLLH—Cur Proc Done

Cur Proc—MLLH Output done

MLLH—ODC Record output of packet ack

ODC—COC Ready for next output packet

COC—Cur Proc Done

Table 4.1.1-1
Process switches for typical input packet

21

Switch

Cur Pro—MLLH

MLLH— IDC-CIC

IDC-CIC—J/Q

J/Q—MLTH

MLTH—Cur Proc

Cur Proc—MLTH

MLTH—J/Q

J/Q—ODC

ODC—MLLH

MLLH—Cur Proc

Cur Proc—MLLH

MLLH—ODC

ODC—COC

COC—Cur Proc

Function of process swlU he.! to

Create segment for received packet

Process input packet

Journal; Packet ack

Write rasg to tape

Wait for journal done

Journal done

Resume journal

Process EOM ack for output

Output EOM ack

Done

Output done

Record output of EOM ack

Ready for next packet

Done

Table 4.1.1-2
Process switches for last packet of input message

22

Switch

Cur Proc—MLLH

MLLH—ODC

ODC—COC

COC —ODC

ODC—MLLH

MLLH~Cur Proc

Cur Proc—MLLH

MLLH—IDC-CIC

IDC-CIC—J/Q

J/Q—Cur Proc

Functior: of oro.oess swj.te.hed to

Ready for more output

Record output done

Route a packet

Ready for output

Do output

Done

Packet ack received

Process Packet ack

Record packet ack and dismiss packet

Table 4.1.1-3
Process switches for output packets

23

Process switches/second =
Messages/second x Process

switches/message

= 3.22 x 84

= 270

Assuming, based on the existing security kernel code for
PDP-11/45, a time of 500 us per process switch, a total of
135 ms/secor:d is required for process switches. This
figure, indicating 13*5 percent of processor time for
process switches, applies for the peak CP load.

4.1.2 Other SCE Functions

The major operations required of the SCE, other than
process switches, are those dealing with segment creation,
deletion, and swapping to and from main memory. Each
four-packet message requires twelve segment creates —
four for received packets, four for transmitted
acknowledgement packets, and four for received
acknowledgements. Each message also requires eight
segment deletes — for the acknowledgements — and eight
swap-outs and four swap-ins. The excesses of swap-outs
over swap-ins and of creates over deletes reflects the
fact that messages are allowed to accumulate in the system
until disk storage fills.

The total of SCE operations is

12 creates

8 deletes

8 swap-outs

4 swap-ins

or 32 SCE operations per message. Assuming (very
conservatively) one millisecond per SCE operation yields:

32 ms/message.

At 3.22 messages/second, the time for other SCE operations
is

3.22 x 32 or 103 ms/second

24

4.1.3 Total

Summing the figures presented above yields

135 ms/second for process switches
103 ms/second for other operations or
238 ras/second for SCE use

This set of figures is based on relatively straightforward
exception-free message processing, but on relatively
conservative SCE timings. Thus an estimate of 25 to 30
percent of processor time for SCE operations seems
conservative.

It should be noted that the estimate above applies to
peak message loading and a busy processor (see Section
4.2). If the processor is less busy (less than 6000
characters per second) , SCE time requirements will be
reduced ir. proportion.

4.2 System Timing

The system loading of 6000 characters per second for
a CP implies a very heavily loaded processor. It is
appropriate to consider the processor load on the CP
independent of the SCE. A system developed recently by
CCPC requires 97 instructions per character in and out to
perform its message processing functions. Perhaps 15
percent of the instructions in this system would not apply
to a CP, so an estimate of 82 instructions per character
seems reasonable. Assuming the same ten percent overhead
for packet headers used in Section 4,1 yields:

6600 characters/second

82 instructions/character

or 541000 iri3tructions/second

or 1.84 usec/instruction

The class of minicomputer processors being considered for
the CPs are not this fast — times of 3 usec per
instruction or more are more usual.

It should be noted that the problem raised above is
independent of the use of a SCE. If a SCE requires more
instructions per message than the executive of the CCPC
system discussed above, it will aggravate the problem; if
less, it will alleviate it. However, it appears that the

25

basic problem is caused more by the 6000 character per
second throughput and the 82 instructions per character
than by the use or absenoe of a SCE. A separate study
should address these issues.

4.3 Matr Memory Size

This section considers the main memory requirements
of the SCE itself. The SCE requires memory space for
resident code, for resident tables and data bases, and for
allocation on an as-needed basis to data bases such as
directories that are not always in main memory. The SCE
space requirements have been estimated from the design
presented in Section 2.1 and from experience with the
existing kernel for the PDP-11/45.

4.3.1 Resident Code

The resident code requirement for a SCE is estimated
at 12000 bytes, based on experience with the PDP-11/45
kernel and a fair margin for growth.

4.3.2 Resident Tables

The space requirements for SCE resident tables are
dependent on the values of several variables defining the
CP configuration and mode of operation. A key factor is
the number of processes in the system. Using the process
organization shown in Section 2.2.1, 132 processes can be
identified as shown in Table 4.3.2-1. The exact number of
processes is defined by the number of ports (taken at 38),
the number of security levels (taken at 7) and the number
of protocols (taken at 3). An additional forty-eight
processes are allowed for asynchronous, utility, and
support functions, and safety factor. Thus the total
process count is 180. There may also be conservatism in
the estimate of 132, as it appears that a CP will handle 6
rather than 7 distinct security levels.

26

Input MLLH/Port x 38 ports

(IDC/CIC)/Protocol/level x 3 Protocols x 7 levels

(J/Q)/level x 7 levels

(COC)/level x 7 levels

(ODC)/level/Protocol x 3 Protocols x 7 levels

Output MLLH/Port x 38 ports

Table 4.3.2-1 CP Process Count

The following paragraphs Identify specific tables in
the SCE, their sizes, and the space they require. Table
4.3.2-2 summarizes this data.

38

21

7

7

21

132

Memory block table:

Active Segment table

requires 3 bytes per block for each
256-byte block. Assume a 256K memory,
for 1024 blocks. Then 3 bytes/block x
1024 blocks = 3072.

requires 16 bytes per ASTE. The number
of ASTE's is estimated at 512, allowing
two private segments per process (KS and
stack) plus about 150 "general use"
shared segments. In addition, 512 2-word
"connected process list" entries are
allowed in a pool associated with the
AST. Thus,
512 ASTE's x 16 bytes/ASTE r 8192 bytes
512 CPLEs x 4 bytes/CPLE = 2048 bytes

27

Memory block table

AST

CPL pool

Hash Table

IPC Element Pool

Bit map (Disk)

Process table

3072

8192

2048

512

1792

512

4500

20628 bytes
Table 4.3.2-2 CP Table Summary

Hash Table - A hash table, of size about half that of the
AST, is used to speed access to ASTE's. Each
entry is two bytes, so 2 bytes/HTE x 256 HTE's
= 512.

IPC elements - The number of IPC elements need not be much
more than the total number of processes. Each
element requires 7 bytes, and 256 are allowed
so 7 bytes/IPC x 256 IPC's 179:

Disk bit map - A 512K byte disk and 256 byte blocks are
assumed. At one bit in the map per disk block,
the map requires (1024K/256) blocks x 1/8
byte/block s 512 bytes. A disk of this size
will allow approximately two minutes of
message build-ups before saturating the
disk.

Process Table - The process table requires 25 bytes per
process. With 180 processes active, the table
consumes 25 bytes/process x 180 processes =
4500 bytes.

The total requirement for SCE resident tables is thus
20628 bytes.

4.3.3 Allocatable Space

Space is required for allocation to directories and
per-process segments as a function of system activity.
With three messages per second processed and about 6
processes involved in the handling of each message, it

28

seems reasonable to allow storage for two seconds worth,
or thirty-six sets of per-process segments. Each process
requires two per-prJC^T. segments of 256 bytes (or less).

In addition, a fair number (perhaps fifteen) of
directories should be in main memory, at 1024 bytes per
directory. This allocation totals:

256 bytes/segment x 72 segments

1024 bytes/directory x 15 directories

or 33792 bytes

This estimate is very crude, so a total of 50K bytes
allocatable space is actually allowed.

4.3.4 Summary

Table 4.3.4-1 summarizes the SCE space allocation.

Code 12000 bytes

Tables 20600 bytes

Allocatable 50000 bytes

82600 bytes
Table 4.3.4-1 SCE Space Summary

The total allocation to the SCE is thus about 83000 byte3.

4.4 Disk Usage

The throughput requirement for the CP disk is
determined by the number of disk reads and writes per
message and the number of messages per secor.d. Each
message undergoes four swap-ins and eight swap-outs, for a
total (1) of twelve disk operations per message.
Multiplying this requirement by 3^22 messages per second
gives

3.22 messages/second x 12 operations/message

(1)
Note that a swap-in does not require a disk read if a

segment's cor-- buff-.-r has not been reallocated.

29

or 38.6 disk operations/second

This requirement allows 25ms per disk operation. A
typical small computer (head per track) disk has a 16 m3
access time, so packet processing does not overload the CP
disk. If a read after write capability is desired, the
disk must have multiple gap heads.

Over and above the requirements for pack input and
output are those for program overlays. If each message
requires four overlays (swap-ins) the operations per
message rise to sixteen, and the total disk usage is

51.5 operations/second

or 19 ms/operation

The latter figure is close to the limit for a small disk.
It should be noted that this load, like that on the
processor, is a function of the CP loading and not the
presence or absence of an SCE.

30

5. Software Production

5.1 SCE Software

5.1.1 Production Mrth.vlol \»Y

Th^ SCE software design and implementation will be
derived directly from a mathematical model of
communications processor security that has been rigorously
proven secure. The technique of successive refinement
will be used to insure that the ultimate SCE software
correctly implements the mathematical model. Four steps
of successive refinement that are necessary for the SCE
are as follows: Math model; formal specification;
high-level language; machine language.

Math Model - MITRE has developed a finite-state
mathematical model of computer security which is
appropriate for the abstract representation of
communications processor security. The model specifies
subject and objects, corresponding to processes and
segments respectively, access modes, and rules for
determining how subjects may access objects. The proof of
the model's security (i.e., compromise prevention) insures
that any programmed system which accurately corresponds to
the model would be incapable of effecting a compromise.

Formal Specification - This representation of the SCE
is derived directly from the model and specifies
state-variables and operatior.s on them in terms of data
structures and algorithms appropriate for implementation
on a computer. The formal specification begins to take
into account the specific features of the machine (such as
the existence of descriptor registers, the I/O
architecture, interrupt structure) for which the SCE is to
be implemented. The technique used for this level of
representation is called a "Parnas Specification." (1)

High Level Language - This representation provides a
convenient intermediate step between the formal
specification and the machine language for the SCE. The
high level language expression is derived directly from
the formal specification. Required and desirable features
of the high level language are listed in Section 6.

(1) Parnas, D.L., "A Technique for Software Module
Specification with Examples," Communications of the ACM
Vol 1r», >Io. 5, May 1972.

31

Machine Language - The fourth representation of the
SCE is the binary code that is loaded into the machine.
This code is derived directly from the high-level language
through either a compiler program or through manual
compilation. An intermediate assembly language version
may be useful in this translation from high level language
to machine language.

Each successive level of refinement must be proven to
correspond correctly and completely to the level of
representation from which it was derived. Thia
correspondence will then propagate the security of the
mathematical model down to the level of machine language
which represents the SCE in an executable form. The
techniques for proving the correspondence of each level to
its immediate predecessor are described in Section 5.1.2
below.

5.1.2 Software Production Schedule

The production schedule is shown in Figure 5.1.2-1.
This schedule assumes that the MITRE finite-state
mathematical model will be used. Each task shown in
Figure 5.1.2-1 is described below. The SCE production
effort will be preceeded by a two month lead-time for
familiarization with the SCE concepts. The lead-time
effort will require four people designated for
design/implementation and one person designated for
systems engineering/technical support.

5.1.2.1 Develop Formal Specification Das&l on Math Model

The formal specification will be developed over a
four month period with a work level of one or two people
for design/implementation and one-half to one for systems
engineering/technical direction. The Parnas Specification
developed will represent all data structures needed by the
SCE to represent machine states and all operations
provided by the SCE (i.e., the SCE's primitive functions)
for performing state transitions. Applications
programmers can begin work at the time the formal
specification is complete.

5.1.2.2 Develop Hirh-T.Qvel Language Expression Based on
Formal Specification

A three month effort with a work level of one person
for design/implementation and one-half for systems
engineering/technical direction will be applied to the
high-level language representation of the SCE.

32

5.1.2.3 Translate Kith-Level Language Expression into
Machine Language

A one month effort with a work level of one person
for design/implementation and one-half for systems
engineering/technical direction will be applied to this
task. This may be accomplished by a compiler program or
by manually compiling the high-level language. These two
methods are discussed with respect to validation in
Section 5.1.2.6. A two month effort will be required if
manual compiling is necessary. Applications programmers
can begin testing their programs at the time the
translation is complete.

5.1.2.4 Develop Certified Disassembler

A two month effort with a work level of one person
for design/implementation and one-half for systems
engineering/technical direction will be applied to develop
a certified disassembler program for use ir: the
correspondence proof of the SCE's machine language
expression to the high-level language (See Section
5. 1.2.6).

33

3
T3

01
JS
o

C/J

c
o

o
3

T3
O
h

ex,

s
C/l

»

CO

,S
4J
C
O

.C CO
JJ 3
C C /-s
O CO T3
B E <u

en
i-l >H 3

CO -r-t
C CO
O T3 i-l

•i-l <U
4J M 60
i-t i-l c
•O 3 i-l
•O t/H

CO CU i-l
M a

oj
c
o

CO O
•i-l u

CN

0)

o
o

u
CO
a

T—I "O •!-!
CO

CM

sO

o

a
en

IH

§
ex,

o
V
a.

CO

CO

0

CN

O
0

a
-o
o
O

to

o
a

CO

o
ex,

• C!
to o

•H
OJ 4-1
> o
01

—1 2
•H

u T3
V
3 I-l
O CO
a. 0 a •H
CO C
B

(1) OJ
u c 4J
CO o ^~^

•l-t 60
^ 4-1 C
-O CO •H
. n 4-1 h
CO c <u ^ oi 0)

s c
to 01 •r-4
CO .-1 60

a. a c B 01
3 •r4
0 ' 1 co

XI c B
co 60 OJ

TJ. 4J
10 CO to
I-l 01 >,
CO ~o to

J3
1 1

z CO £

•-I
1

CN

0)

0)
1-1
3
60

•i-(

U
o

iH

|
0)
CO

to
r«
ir.

CN
I

0
(X, •a

<u
•i-4

CN
o

0)
B

•r4

I

CO

34

5.1.2.5 Prove Correspondence of Fj_r nal Specification to
Math Model

This will require a four month effort with a work
level of one person for design/implementation and one-half
for systems engineering/technical direction. MITRE has
developed a methodology for proving the correspondence of
the formal specification to the mathematical model. The
states of the mathematical model are first mapped into
representations involving the data structures of the
Parnas specification level. Then each SCE operation at
the Parnas specification level is shown to correspond to
the application of a sequence of state-transitions at the
math model level for correct correspondence. Figure
5.1.2.5-1 depicts this proof of correspondence.

5.1.2.6 Prove Correspondence of Machine L.ai.gua.T'. .to
r . ial Specification

This will require an eight month effort with a work
level of two people for design/implementation and one for
systems engineering/technical direction. Two stages are
involved: proving the correspondence of the high-level
language to the formal specification, and proving the
correspondence of the machine language to the high-level
language.

5.1.2.6.1 High-Level Language to Formal Specification

The formal specification will provide a set of
assertions for each data structure and SCE operation;
these assertions must be correctly preserved in the high
level language representation in order to prove the
correspondence of the latter to the former. Methods of
proof-of-correctness are available which are appropriate
for preserving the validity of assertions about programs
written in a structured high level language. (1)

5.1.2.6.2 Machine Language to High-Level Language

The SCE object code will be derived directly from the
high level language expression of the SCE, based on a
statement by statement translation of the SCE's high level
language expression. The choice between the following two
methods for accomplishing this translation depends upon

(1) 'Hoare, C. A. R., "An Axiomatic Basis for Computer
Programming," Communications of the ACM, Vol 12, No. 10,
Oct 1969.

35

Correspondence Proof of Formal Spec.to Model

V - States of the model

W - States (i.e., V-functions) at the Parnas
Spec level

h - Mapping between Parnas Spec states and
math model states

R - State transformation at the math model
level

S - State transformation at the Parnas Spec
level

Figure 5.1.2.5-1

36

whether or not an appropriate compiler exists for the high
level language in which the SCE is written:

a. Compiler method: There is no requirement for the
compiler used in the translation to be certified correct.
The compiler will produce a machine language version of
the SCE, and also a mnemonic assembly language listing
(complete with symbolic names for registers, storage
operands, literals, entry point laoels, and a
corresponding symbol table) which maps directly to the
machine language. The correct correspondence between the
assembly language listing and the high-level language
expression will be verified manually. A certified
disassembler will then be used to disassemble the machine
language version of the SCE into mnemonic assembly
language. A manual comparison of the compiler's assembly
language listing to the disassembler's output will
complete the correspondence verification of the machine
language to the high level language expression of the SCE.

b. Hand-compile method: In the absence of an
appropriate compiler, the high level language expression
of the SCE will be manually compiled into an intermediate
assembly language or macro-assembly language expression.
The correct correspondence between these two expressions
will be manually verified. An (uncertified) assembler or
macro-assembler will then be used to produce the machine
language version of the SCE. Finally, a certified correct
disassembler will be used to disassemble the machine
language back into assembly language. A manual comparison
between the output of the hand compilation and the output
of the disassembly will be accomplished to verify the
correctness of the machine language version of the SCE.

5.1.3 Contractor Requirements

A contractor will be required to produce all levels
of expression of the SCE. The documentation of the
correspondence proofs of each level to its predecessor
will also be required of the contractor.

The designers and implementors of the SCE will aJ1 be
cleared to the highest level of information to be
processed in the communication system. Thi3 is because
the correctness verification process takes place
concurrently with the work involved in designing and
implementing the SCE. Verification of correctness cannot
be effectively accomplished unless those individuals who
will perform the technical verification are intimately
familiar with the SCE. An alternative approach would be

37

to have system-high cleared personnel closely monitor the
efforts of designers and implementors (not cleared system
high) throughout the entire software production cycle, as
described in Section 5.1.2. The software production
facility must be cleared system-high to prevent any
unauthorized modification of any media used in the
production of the SCE (e.g., design sheets, ceding sheets,
correctness documentation, cards, tapes, etc.';.

5.1.4 SCE Load Tape

The SCE software will be delivered as a single
bootstrap tape containing a certified loader routine
followed immediately by the SCE machine code and the
tables and data bases needed to initialize the SCE in the
machine. This tape will be capable of loading itself on
the "bare" machine; i.e., it will not require the
assistance of any software other than that contained on
the tape. The precise machine console and panel switch
settings required to initialize the machine for bootstrap
using the SCE tape will be specified in the operations
documentation.

5.1.5 Certificatlor; Procedure

The certifying agencies will conduct a technical
assessment of the SCE correctness verification
documentation provided by the contractor. For this
assessment to be effectively accomplished, qualified
personnel must be directly involved with the design and
implementation of the SCE throughout the life of the
software production effort. ESD can provide technical
guidance during the entire SCE assessment period.

5.1.6 Modification to SCE Software

Any modification to the SCE will require
re-establishing the correspondence between each modified
SCE primitive (at the level modified) and the next higher
level of abstraction. Also required is the successive
refinement of each modified primitive down to machine
language, proving correspondence at each level. This
activity will require technical assessment and ultimately
recertification.

38

5.2 Non-SCE Software

5.?., 1 Multilevel "Trusted" Programs

These programs will be executed by multilevel
processes and, therefore, will be capable of downgrading
classified information. These programs nust be
implemented by two-man teams cleared systetn-high, since
the potential for security compromise exists.
Proof-of-corrsctnass techniques with respect to assertions
stating that these programs do not downgrade classified
material must be applied to these programs, A
certification procedure similar to that used for the SCE
will be applied to the trusted programs.

5.2.2 Single-Level Programs

T'I ;.;•: programs are executed by single level processes
and, therefore, are incapable of effecting security
compromise. However, system integrity is an issue of
concern r-garding practically all programs. The
successful functioning of a common system is dependent on
all but H small subset of programs in the system.
Certificatior: of programs with respect to system integrity
will rely upon software production procedures insuring
that software designers and implementors are
"non-malicious." Standard test-and-debug methods must be
applied to all applications software to achieve a
desirable degree of system integrity.

39

6. SCE Requirements

6.1 Software Requirements

6.1.1 General Software Require:'!.--! ts

(1) The SCE must be proved correct.

(2) A class of functions to load the SCE and
applications software and to perform the total system
initialization must be produced and certified.

6.1.2 Software Development Requirements

As discussed in Section 5, the SCE software should be
developed using the technique of successive refinement
from mathematical model to machine language code. This
development procedure is based on the general software
requirements listed above and should use as a guideline
the other requirements listed for production of the
high-level language and machine language.

6.1.2.1 High-Level Language Requirements

5.1.2.1.1 Mandatory Features

(1) Structured Programming Language
(2) ALGOL-like Block Structure
(3) Data Types: Integer

Character String
Bit String

(4) Locator of Pointer Variables
(5) Structured Data Types
(6) If-Then-Else Statements
(7) While Loops
(8) Separately Compiled Subroutines
(9) Assignment Statements
(10) Facilities to Handle Interrupts

6.1.2.1.2 Desirable Features

(1) User-Defined Data Types
(2) No "GO TO" Statements
(3) One-Entry Subprograms
(4) Constraints on Locator or Pointer Variables to

Point to Specific Data Types

40

6.1.2.2 Machine Language Requirements

(1) *Jcr:-Interruptable Test and Set Instructions
(2) Other Instruction Characteristics as

Required in the applications Software
Specifications

(3) Interrupt Control Instructions
(4) Certified Disassembler

6.2 Hardware Requirements

Based upon the design details of the SCE (refer to
Section 2), a list of hardware features necessary to
support the software was developed. It should be
emphasized that the requirements listed are only those
determined to be applicable to the support of SCE
software, and do not necessarily include any requirements
for supporting the total communications processing
activity.

6.2.1 Mandatory Features

CD Memory Segmentation

a. At least 8 descriptor registers/machine
state

b. Unique memory access of Read/Execute,
Read/Write, No Access

c. Minimum Segment Size - 256 Characters

(2) At Least Two Machine States with Suitable
Levels of Privilege

6.2.2 Desirable Features

(1) Descriptor Base Registers
(2) I/O Handled as Memory Access - Interrupts

Vectored on a Per State Basis
(3) Unique Memory Access of Read Only
(4) Demand Paging

6.3 Existing Hardware

The working group listed six machines which were felt
to be likely candidates for supporting the SCE as
described in Section 2. A study was conducted to
determine which of these machines satisfied the hardware
requirements listed in Section 6.2. It should be
reemphasized that these machines were investigated with
regard only to satisfying the requirements for supporting

41

the SCE and were not analyzed as to their feasibility in
the communications processing environment.

It should also be noted that the list includes
machines of one particular class, commercial
minicomputers. Mioroprogrammable processors, suoh as the
Burrough's "D" machine, were not investigated in this
study, but could prove to satisfy the hardware
requirements. Further investigation in this area would be
required before any machines in this class could be termed
as eligible hardware to support the SCE.

The results of the hardware study are presented in
the Processor Characteristics Table which follows.

42

MANDATORY COMPUTER

HARDWARE
REQUIREMENTS

DATACRAFT
6024/4

DATA GENERAL
NOVA 840

DEC
PDP 11/45

INTERDATA
7/32

MODCOMP
IV

PRIME
300

\t least two machine
states

YES YES YES YES YES YES

^t least 8 descriptor
registers/machine state YES YES YES YES YES YES

•iinimum segment size of
256 characters or less NO NO YES YES NO NO

Memory Access:
Read/Execute YES YES YES YES YES YES

Memory Access:
No Access YES YES YES YES YES YES

Memory Access:
Read/Write YES YES YES YES YES YES

DESIRABLE
HARDWARE
REQUIREMENTS

descriptor Base
Register YES NO NO NO YES YES

Memory Access:
Read Only YES NO YES YES YES NO

Demand Paging YES NO NO NO NO YES

Descriptor-Based I/O NO YES NO NO YES NO

I/O Handled as
Memory Access NO NO YES NO NO NO

SUMMARY

Satisfies All
Mandatory Requirements NO NO YES YES NO NO

Satisfies All
Desirable Requirements NO NO NO NO

NO NO

Table 6.3-1 Processor Characteristics Table

43

7. Conclusions of the Working Group

Following is the list of conclusions to which the
working group has come during its month-long feasibility
study effort.

(1) A Secure Communications Executive (SCE) can be
realized by tailoring the security kernel to provide
communications applications support.

a. A two level machine suffices.

b. Memory segmentation is required and hardware
protection support is necessary.

(2) The constraints imposed by SCE design do impact
the design and execution of applications programs.

(3) The Secure Communications Executive will use
25-30% of the total CPU time available at maximum
throughput. This is believed to be comparable to that
used by a conventional executive.

(4) Tailoring the security kernel to a
communications function in a two-state machine will
increase the amount of code to be certified.

(5) There is no saleable certification scheme on
record and certification policy is unclear. The policies
and procedures for certifying a computer's security are a
parallel development and are not conclusive.

(6) The detailed examination and documentation
involved in certification will force a more accurate
Secure Communications Executive.

(7) No increase in core requirements will be caused
by the SCE design.

(8) With or without the SCE and based on 82
instructions/character, minicomputer processors of the
class being considered for the CP cannot support a 6000
character/second throughput.

(9) The use of the SCE does limit the number of
machines that can be used.

(10) Of a list of 6 commercial miniprocessors from
major manufacturers, two met all the mandatory
requirements of Section 6.2 and none met all desirable as

44

well as mandatory requirements. The one mandatory
requirement which was not met by the four other processors
was, in every case, the minimum segment size which can be
altered by hardware modification.

(11) There is technical risk involved ir the SCE
proof of correctness. The proof of correctness is still
being verified piecemeal in conjunction with other
systems, and stating conclusively at this time that no
problems will occur would be premature.

(12) The SCE is rigorously verified to enforce
access authorization. Therefore, the SCE provides
effective compromise prevention.

(13) The SCE will not solve the integrity problem,
but does provide an aid in testing system integrity.

45

APPENDIX A

APPLICABILITY OF AUTODIN

SECURITY CONTROLS

A.1 Overview

A. 1. 1 Purpose of t_he Report

This report is a description of current DCS AUTODIN
security controls and techniques. The security measures
discussed are those which apply to a modern communications
system.

A.1.2 Scope of the Report

The AUTODIN techniques are discussed in the light of
both hardware and software considerations. Message
handling controls are presented in detail, with emphasis
on software. It is not the intent of this report to
provide a comprehensive threat analysis. Unique system
characteristics, such as auto-dial, auto-answer and
exception transmission, are not directly addressed.
Message switching functions as found at the CP are of
prime concern, and packet switching characteristics that
exist ir: the communication system are not addressed.

A.1.3 Background

The seed from which AUTODIN (AUTOmatic Digital
Network) grew was planted by the Air Material Command
under the title COMMLOGNET. For this reason, several
AUTODIN switches are on or near AFLC bases. The system
was originally designed to manage the flow of supply
transactions among the Air Material Areas and as such
would have been an unsecure system. The b^sic idea was
expanded to become a store and forward message processing
system for the DoD and other agencies (e.g., Red Cross,
contractors).

Since no proven system for insuring message security
in an automated communications system existed in the early
'60s, a set of ad hoc rules developed, beginning with the
simple concepts of physical security and cleared
programmers. These rules have developed to the point
where DCA can state that "message security is assured
through multiple security checks within the AUTODIN
switching centers". DCA manages AUTODIN for the JCS.

A.1.4 Format of the Report

Section 2 describes the software security design with
detailed explanations of header and message processing.
Section 3 addresses the means by which AUTODIN techniques
would provide for compromise protection and message

A-1

integrity. Section 4 presents a statement of acceptable
performance in light of current system operations.
Section 5 presents the software production procedures used
in AUTODIN. Section 6 provides a list of hardware
requirements and machines which meet these requirements.
Section 7 presents conclusions that can be derived from
this report and current AUTODIN applications.

A-2

A.2 Software Security Design

The security protection features listed below have
been incorporated into DCS AUTODIN Switching Center (ASC)
software.

A.2.1 Input to the ASC (per-message basis)

A.2.1.1 Each message has a five-character security field
consisting of a single character appearing five times.
Each character of the field is checked for the presence of
a valid code and for perfect agreement with each of the
other four characters; an error will result in message
rejection.

A.2.1.2 Message security is checked against the line
security; (1) if the input line is not cleared for the
input message, input message transmission is inhibited.

A.2.1.3 If the addressee is not cleared to receive the
message, the associated delivery will not be made and the
originator will'be notified that message routing is
invalid due to security reasons.

A.2.2 Output from the ASC (per-message basis)

Output transmission will be inhibited if either the
output line or addresses is not cleared to receive the
message.

A.2.3 Input to the ASC (continuous)

On input to the ASC, message data is accumulated into
80-character blocks. Each block is tagged with the proper
security code (as specified in the message header) and a
sequential number. Or: all subsequent internal transfers
the security code and sequential number of each block are
checked; an error or discrepancy will result in
supervisory notification and output transmission will be
inhibited. The security code attached to each block is
transmitted and checked on ASC-ASC transmissions.

A.2.4 Straggler Detection

AUTODIN is programmed to detect input stragglers by
comparing message header and trailer station serial number
fields for perfect agreement. Any discrepancy will result

(1) These clearance levels are prestored in the ASC.

A-3

in message rejection. A straggler is defined as a
message, or part of a message, whose address section is
controlling the delivery of both. Any straggler is
therefore apt to be delivered to the wrong address.

A.2.5 Accountability
n

A number of ASC internal checks and balances enhance
security protection directly and indirectly by providing
for the detection of the interlacing of segments of
different messages. Some examples are:

A.2.5.1 On-line core resident queue tables contain
message block count. On message output actual block count
is checked against the queue table block count; a
discrepancy results in an appropriate supervisory
notification and termination of output transmission.

A.2.5.2 On ASC-ASC trunks the message length or "block
count" (number of 80-character blocks) is transmitted in a
message control block (MCB). The receiving ASC will
verify the sequential block number and MCB block count
against the actual count of blocks received; a discrepancy
will result in message rejection.

A.2.5.3 On input data messages which contain a block
count field, the number of blocks actually received is
compared with the block count specified in the message •
header; a discrepancy will result in message rejection.

A.2.6 0ff-l.1.t:o Programs

Off-1 !..'.•> -.'i>oort nrograms which print out data
contained on history tapes have been programmed to inhibit
or suppress the printing of certain highly classified data
unless ron-routine extraordinary supervisory intervention
is invoked.

A-l|

A.3 Security Provided by AUTODIN Techniques

A.3*1 Compromise

A. 3.1.1 Definition of Compromise

A security compromise is defined as one or more of
the following conditions.

1) A terminal or interfaced system receives a
message classified to a level higher than the clearance
level of the terminal interfaced system.

2) A terminal or interfaced system receives a
message having a special access category not contained in
the set of special access categories authorized for the
terminal or interfaced system.

A.3.1•2 AUTODIN Compromise Prevention Measures

A.3.1.2.1 Message Input

AUTODIN computer checks are made on the redundant
security marking characters at the time of message input
to assure that:

1) they represent a valid security level.

2) they are consistent with each other.

3) the level they represent is authorized to be
transmitted by the transmitting terminal.

'4) the level they represent is authorized for
delivery to the addressee.

A.3.1.2.2 Message Output

On message output from the switch, checks are made to
determine that:

1) the addressee is authorized to receive the level
of classification assigned to the message.

2) the output communications channel is cleared to
carry the level of classification assigned to the message.

These checks must be repeated at output time even
though they were made at the time of message input, in
order to protect traffic from changes which may occur in

A-5

the communications line status tables. For example, a
subscriber's traffic may have been alt-routed to a
subscriber who was not cleared to receive the same level
of traffic.

A.3.2 Message Integrity

A. 3•2.1 Definition

Message integrity includes those functions necessary
to insure that the information in the system is delivered
accurately without distortion or errors introduced during
distribution, that the failure of one or more hardware or
software ellments can be adequately detected and an
appropriate restart/recovery procedure initiated.

.
A.3•2.2 Failure Recovery Function

Redundant records and storage are maintained on-line
at each switch to provide message integrity when minor
failures occur in the system. When a catastrophic failure
occurs, messages which were in the switch at the time 0f
failure can be retrieved from either of the two history
tapes.

A.3•2.3 Service Message Function

If a. message does not meet the proper format or is
irregular in any way, the system rejects the message and
declares an error rather than attempt to continue
processing the message. While the required software
action is not specified for each message check failure!,
the following rules generally apply.

1) Any time that message check errors are detected
at time of message input, the message is either rejected ,
with appropriate control signals to the originator, and/or
the switch originates a service message indicating
rejection and the reason.

2) If a message check error is detected at any other
time during processing (i.e., after the switch has
accepted the message and is therefore accountable for it),
the message is usually "scrubbed' ,from the system and
switch service personnel are responsible for follow-up ,
action to insure that the messagefis protected. p

1

A-6

A.3.2.4 Straggler Pm.otloi

TV- \TTTODTM oonouter program checks the incoming
message to detect the presence of a straggler. For this
purpose the station serial number in the message header is
compared for equality to that in the trailer.

A.3.2.5 Communications Line Functions

Parity checks are accomplished or. all data transfers
within the processor, between processor and peripheral
devices, and on communications lines. Parity checking
assures integrity of address indicators, precedence, and
security markings.

A. 3 • 2.6 Message Bioolj Handling Function

The AUTODIN computer program usually handles messages
in segments rather than as whole units. Foolproof
accounting procedures are used to prevent inadvertant
connection of segments from different messages into one
message. To this end, the following checks are used.

1) Each segment is sequentially marked on
transmission or storage, and the sequential number is
checked on receipt or removal from storage.

?) Each segment is marked with the classification of
the message as indicated by the header whenever
transmitted or stored, and consistency of classification
marking is checked on receipt or removal from storage.

3) The count of message segments on input is
compared with the number of message segments being
prepared for output.

A-7

h.H Performance

The AUTODIN security techniques exist in several
operational systems. Memory requirements, executive
overhead, and throughput capacity have been proven to be
acceptable in each system.

A-8

A.5 Software Production

DCA headquarters maintains complete control of all
software. All personnel who Assist in the development of
program library tapes are cleared for access to the
highest classification of traffic processed by the system.

A.5.1 Program Similarity

The on-line programs for each AUTODIN switch are
identical and are developed by DCA. The patch areas are
also identical and centrally managed. The only variation
among these switches occurs in the security authorization
data base. This data base is developed and maintained at
the switch and contains routing, security, and media
information on each subscriber. Although each data ba3e
may contain varying numbers of blank entries, all are the
same length in order that the on-line programs can be
identical.

A. 5 . 2 Program Changes

All program reassemblies are conducted in the secure
environment of the test switching centers. (DCA maintains
two such test switches - one CONUS configuration and one
overseas.) Small changes to the program ars implemented
through the use of patches. These patches are written,
tested and documented at the test switches. The patches
are then delivered to the active switches and the source
coding changes retained for use in the next reassembly.
If the change is to be implemented to comply with a
specific operational requirements, the agency concerned
(e.g., NSA) will be invited to participate in the formal
test and acceptance.

A.5.3 Program Changes (emergency)

Two on-site programmer's (OSP's) are assigned to each
switch to provide software maintenance support to the
switch supervisor. If a processing error is discovered an
OSP will investigate the problem and produce an emergency
patch. This patch must be coordinated with the test
switch and cannot remain on-line for more than 48 hours.
Personnel at the test switch will investigate the problem
and generate a properly documented patch.

A.5.4 Program Distribution

The assembly run at the test switch produces an
unclassified program library tape (PLT). The PLT is sent

A-9

via certified mail to the OSP, who combines it with the
security authorization data base to produce the
site-unique house operated program (HOP) tape. This HOP
is the new on-line system tape and is classified to the
highest level of traffic processed by the switch.

A-10

A.6 AUTODIN Requirements

A.6.1 Hardware

A. 6. 1. 1 Mandatory Fe&Utn s

A machir-e with it least two execution states and
suitable levels of privilege is required.

A.6.1.2 Desirable Features

1) segmented memory

2) unique memory access control of read-execute,
read-write, no access and read only

A.6.2 Existing Hardware

Of the six commercially available minicomputers
surveyed (DATACRAFT 6024/4, DATA GENERAL NOVA 840, DEC PDP
11/45, INTERDATA 7/32, MODCOMP IV and PRIME 300), all have
all mandatory features and four of the six have all
desirable features.

A-11

A.7 Conclusions

A.7*1 AUTODIN emphasizes message integrity
considerations. Message handling techniques for integrity
preservation are well defined, and correct implementation
of these techniques assures message integrity.

A.7.2 Use of AUTODIN security techniques in a modern
communication system will not impact the program
development schedule, since use of these techniques was
considered in the projection and speciflcationa.

A.7.3 Application of AUTODIN software security techniques
result in acceptable overhead in existing systems, and
application of these techniques is not expected to
adversely affect throughput.

A.7.4 AUTODIN techniques offer protection against
compromise to the degree that software is carefully
designed and exhaustively tested.

A-12

